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Based on a two-dimensional small-world network model, we propose an efficient routing strategy that
enhances the network capacity while keeping the average packet travel time low. We deterministically increase
the weight of the links attached to the “congestible nodes” and compute the effective distance of a path by
summing up the weight of the links belong to that path. The routing cost of a node is a linear combination of
the minimum effective distance from the node to the target and its queue length. The weight assignment
reduces the maximum load of the network, while the incorporation of dynamic information further balances the
traffic on the network. Simulation results show that the network capacity is much improved compared with the
reference strategies, while the average packet travel time is relatively small.
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I. INTRODUCTION

In recent years, small-world networks �SWNs� have at-
tracted wide research interest. Watts and Strogatz �WS�
found that the small-world networks possess two properties:
small vertex-vertex separation and large clustering coeffi-
cient �1�. Since many real-world networks have small-world
characteristics, such as metabolic networks �2�, transporta-
tion networks �3�, the World Wide Web �4�, and the Internet
�5�, the topological properties and dynamical processes of
SWNs have been studied intensively �6–8�.

In small-world networks, the speed of information propa-
gation is much higher than that in regular networks �3,8,9�.
In particular, the small-world property is important in obtain-
ing high efficiency of traffic delivery in transportation and
communication networks �3,9�. These networks are often
characterized by the existence of a few long-range links. In
the study of the navigation and searching process on small-
world networks �10–12�, some “greedy algorithm,” in which
messages are merely forwarded through the neighbors near-
est to the destinations, is shown to be efficient in finding
short paths and the long-range links are responsible for the
high efficiency �10�.

However, in traffic dynamics where many transmission
processes take place simultaneously, if communication speed
is the only factor taken into account, the end nodes of ran-
dom links �congestible nodes� would attract more traffic than
other nodes and not be able to handle them at a time due to
the finite processing capability, finally leading to congestion
�13�. So finding an efficient routing strategy that avoids con-
gestion while keeping the time delay of communication as
low as possible is extremely important. While most previous
works on traffic dynamics are based on scale-free network
models �13–21�, we investigate the same issue on a classical
small-world network model.

As a matter of fact, the network topology is crucial to the
network function and performance �13,19,22–25�. When de-
signing routing strategies, better performance can be

achieved if the characteristics of network topology are con-
sidered. Here we adopt the slightly modified two-
dimensional �2D� version �26� of the WS model. In the WS
SWN model series, the long-range links between randomly
selected nodes—say, shortcuts—characterize the network to-
pology. On the one hand, they reduce the distance between
vertices; on the other hand, they cause congestion. So it is
very important for the shortcuts to function efficiently. For
the same SWN model we study, Fukś et al. �27,28� propose
a partial routing algorithm that allows packets to move ran-
domly when they are far away from the destinations, but
otherwise follow the shortest paths. By doing so, the utiliza-
tion of shortcuts is restricted to local scale. Though the net-
work capacity is enhanced compared with the pure shortest
path routing, the time delay increases again. So introducing
randomness into the routing table may not be a good choice
to utilize the shortcuts. Some other previous studies focus on
enhancing the message-processing capability of the congest-
ible nodes, and the network capacity can be significantly
increased �29,30�; in fact, when the capabilities of the nodes
are all equal, an equivalent strategy is to reduce the packet
arrival rate of the congestible nodes by increasing the cost
�weight� of the corresponding links.

In this paper, we find that there exists a simple routing
strategy that exploits the characteristics of the specific net-
work topology. Aiming at reducing the maximum load, we
set the weight of the links attached to the congestible nodes
as proportional to the network length l0 with all the congest-
ible nodes being treated equally. The total weights of the
paths between pairs of vertices are computed as the effective
distances. In order to further balance the load and enhance
the network capacity, we linearly combine the minimum ef-
fective distance with local queue length to form a routing
cost function, and packets are routed according to the mini-
mum cost. The new strategy is called the efficient routing
strategy �ERS�. Simulations show that for the specific SWN
model, the ERS performs much better than several previous
strategies.

The paper is organized as follows. In Sec. II, the network
model is defined. In Sec. III, the details of the ERS are pre-
sented, the selection of parameters is explained, and the
congestion-relieving mechanism is elaborated. In Sec. IV, re-*Corresponding author. liuf@buaa.edu.cn
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sults and further explanations are given. We conclude the
paper in Sec. V.

II. MODEL AND DEFINITIONS

In the real world, computer hosts are distributed on the
surface of our planet, so we employ a two-dimensional regu-
lar lattice as the underlying structure. Another reason for this
is that the characteristics of realistic Internet traffic can be
reproduced by 2D lattices �31�. Long-range links exist be-
tween randomly chosen sites, for the geometrical position of
the sites connecting distant areas are usually random. One
may think of using the original WS small-world model �1�.
But as pointed out by Newman and Watts �26�, one of the
serious problems with random rewiring is that the average
distances between pairs of vertices diverge since there is a
finite probability of a portion of the lattice becoming de-
tached from the rest in the model. So we adopt a slightly
modified version �26,27� here. The model is defined as fol-
lows.

For a two-dimensional square lattice with periodical
boundary condition which has N=L�L nodes, each node is
only connected to its direct neighbors and every node is a
host that generates, forwards, and receives packets. Choose
two vertices on the above lattice at random and add a short-
cut between them; repeat this for pN times, where p is the
rate of shortcuts. Multiple links are not allowed. Since the
structure of the underlying lattice is not changed, the local
property of the lattice is maintained. Note that for conve-
nience, here p is a rate and not a probability, which is slightly
different from the usual small-world models; nevertheless, in
the statistical sense, the topological characteristics of the net-
work should be close to that of the one taking p as a prob-
ability. Figure 1 shows one realization of our model for L
=10 and p=0.05.

Now we give the definitions of some graph-related quan-
tities. The end nodes of the random links are defined as con-

gestible nodes, since the random links usually “attract” a
large amount of traffic. The shortest path between nodes s
and t is the path with the minimum number of links. The
shortest path length is the number of links on a shortest path
and is denoted by l0. The length of the network is the average
of l0 over all pairs of vertices, denoted by l0.

Corresponding to the path length, the effective distance is
defined. For any path between nodes s and t as P�s→ t�ªs
� i0 , i1 , . . . , in−1 , in� t, the effective distance is defined as

def f�P�s → t�� = �
k=1

n

wik−1,ik
, �1�

where wik−1,ik
is the link weight. The shortest effective path

between nodes s and t is the path that has the minimum
effective distance def f

min�s , t�. When all the link’s weights equal
1, the minimum effective distance coincides with the shortest
path length. Corresponding to the shortest path length, we
define the shortest effective path length as the number of
links traversed by a shortest effective path, denoted by l, and
the effective length of the network is the average of l over all

pairs of vertices, denoted by l̄. Note that Eq. �1� is a general
definition, and we will present the detailed method to con-
struct the effective distance in the next section.

To represent the geographical separation between sites,
the manhattan distance between two nodes n1 and n2 is de-
fined as

dM�n1,n2� = L − 	
i1 − i2
 −
L

2
	 − 	
j1 − j2
 −

L

2
	 , �2�

where i1 , j1 and i2 , j2 are the x and y coordinates for n1 and
n2, respectively. The manhattan route is the shortest path on
the underlying lattice in the absence of any shortcuts.

III. EFFECTIVE DISTANCE AND ROUTING STRATEGY

The effective distance represents a static estimation of the
communication cost of routes and is of great importance to
network efficiency. When the routing cost is solely deter-
mined by the effective distance—i.e., under the static routing
protocol �SRP� �32�—network performance can be improved
by an optimization on the effective distance. Usually the net-
work capacity is characterized by the critical packet genera-
tion rate at the transition from a free-flow to a congestion
state of traffic and is inversely proportional to the maximum
betweenness of the nodes �13,22�, where the betweenness of
a node i is defined as

Bi = �
s�t

�
t�i

�st�i�
�st

, �3�

where
�st�i�

�st
is the fraction of the the shortest effective paths

passing through node i that originate from node s and end at
node t. The fraction of the shortest effective paths is calcu-
lated by the same method of computing the number of the
shortest paths in �33�. To characterize the importance of the
nodes, we use the effective betweenness centrality �EBC�

FIG. 1. An example of the 2D small-world model used in this
paper.
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�i =
1

N�N − 1�
Bi. �4�

The concept of betweenness centrality is first used in de-
scribing the importance of people in social networks �34�.

Under the SRP, maximizing the network capacity is to
minimize the maximum EBC: �max. Danlia et al. �15� pro-
posed a deterministic optimization algorithm to find the op-
timal SRP by adding weight 1 to all the links of those nodes
with maximum EBC iteratively. However, finding the opti-
mal def f that yields the minimum �max is time consuming and
uneconomical when the system size is large, and the globally
optimized solution is almost impossible to be obtained.

In order to avoid such optimization process, we first de-
velop a simple method of assigning link weight to lower the
maximum EBC of the network, then linearly combine the
resulting effective distance with nodes’ queue length to form
the routing cost. The resulting ERS can be regard as a kind
of dynamic routing protocol �DRP�. The dynamical routing
cost enables packets to detour from the original routes when
heavy congestion is encountered and thus balances the traffic
in the network. Since the mean packet arrival rate of a node
is proportional to its EBC �22� under the SRP, if the maxi-
mum EBC of the network is lowered and the distribution of
EBC becomes more homogeneous, traffic will be easier to
distribute more uniformly in the network. So a good static
effective distance is also expected to perform well under the
DRP, and the aim of our method of assigning link weight is
to reduce the �max as much as possible.

The details of the strategy and the dynamical processes
are listed as follows.

�i� Weight assignment.
�a� Initialization: assign weight 1 to all the edges; calcu-

late l0.
�b� Weight updating. For each edge of each congestible

node, if the other end of the link is not a congestible node,
then assign new weight a to this link; if the other end of the
link is also a congestible node, then the link’s weight is up-
dated to 2a−1. Calculate the effective distance, and find out
the minimum effective distance between all pairs of vertices.
The form of a is

a = cl0, �5�

where parameter c is a constant and its value will be given
later.

�ii� At each time step, each node has the same probability
�or packet generation rate, denoted by �� to create a new
packet with a randomly chosen destination. Every node
maintains an unlimited queue which is FIFO �first-in first-
out�, and newly generated packets are appended to the tail of
the queue.

�iii�At each time step, a node s picks one packet in front
of its queue that should be delivered to node t. If t is a
neighbor of s, then send the packet to t; otherwise, compute
the cost Ci for neighbor i of node s:

Ci = �1 − ��def f
min�i,t� + �qi, �6�

where qi is the queue length of node i and the coefficient � is
a constant. Then find the neighbor node with the minimum

Ci; if there is more than one qualified node, pick one of them
at random as the next hop node; add the current packet to its
queue and remove the packet in s. The forwarding capability
of all nodes is set to 1 for simplicity.

�iv� The newly generated or arrived packets, if their des-
tination is exactly the current node, are received by this node
and removed from the network immediately.

�v� Steps �ii�–�iv� are updated parallel in time for all the
nodes in the network.

The aim of weight assignment is to reduce the importance
of the congestible nodes by increasing the weight of the links
attached to them. Since the random links greatly reduce the
distance between vertices and concentrate a large portion of
shortest paths, congestible nodes are the most susceptible to
jamming. As shown in Fig. 2, assume a packet at node s
should be delivered to node t. There are two kinds of pos-
sible routes: one is the shortest path and the other is the
manhattan route. Consider light traffic in which the queue
length information can be neglected. If step �i� is not applied,
the packet will definitely take the shortest path; otherwise, if
the value of a makes the total weight of the shortest path
larger than dM�s , t�, the packet will be diverted to a manhat-
tan route. For the whole network, given a properly selected
value of a, a considerable portion of packets would change
their choice from the shortest paths to manhattan routes. In
this way the importance of the congestible nodes is de-
creased, and when traffic grows, they are not susceptible to
jamming any more.

In the weight assignment scheme above, all the congest-
ible nodes are treated equally, which can be regarded as a
zeroth-order approximation to their importance. The impor-
tance of the congestible nodes is closely related to the geo-
graphical range of the shortcuts connecting them, which is
defined as the manhattan distance between the end nods of a
shortcut. If the geographical range of a shortcut is large, the
number of shortest paths that pass through it is also large and
so does the importance of the congestible nodes at the end of
the shortcut. Since shortcuts are randomly distributed on the
network and their geographical ranges are also random, we
neglect the details of shortcuts for simplicity. It is straight-
forward that the weight of the link that connects two con-
gestible nodes equals 2a−1: consider the present model as a
weighted network. Assume the other nodes’ weights all equal
to 1, and it is usual to adopt the following relation between
the node weight and link weight: wlij

=
wi+wj

2 ���, where i and
j denote two nodes and lij is the link between them. Particu-
larly, in Fig. 2, we let i and j represent two congestible

FIG. 2. Illustration of the weight assigning scheme and
congestion-relieving mechanism of our strategy. Solid arrows stand
for the shortest path, and dotted arrows represent one of the man-
hattan routes.
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nodes. Since ws=wt=1 and wlsi
=wljt

=a, in order to satisfy
���, wi and wj have to be 2a−1. Then using ��� again, we get
wlij

=2a−1. Figure 2 shows a general scene of weight attri-
bution.

Now we explain the chosen form of parameter a in Eq.
�5�. Since our motivation is to reduce the maximum EBC of
the network, the following explanations are based on a static
viewpoint; i.e., the queue length is not taken into account.
First, consider the determinants of a. As mentioned above,
the function of a is to reduce the importance of the congest-
ible nodes and increase that of the low-EBC nodes by avoid-
ing the shortest paths. Most of the shortest paths pass
through congestible nodes, and a few of them pass through
the low-EBC nodes. So at the point which �max reaches mini-
mum, the portion of avoided shortest paths can be roughly
estimated to be 1/2 and is independent of the topology. So a
is exclusively determined by the network topology—i.e., L
and p. Second, consider the trend of a with respect to L and
p. If p is fixed and L is increased, since the average geo-
graphical range of shortcuts �equals L /2� becomes larger,
shortcuts concentrate more shortest paths and the average
importance of congestible nodes increases. So the value of a
needs to be increased to counteract the impact of shortcuts
on the network. Otherwise, if L is fixed and p is increased,
the average geographical range of shortcuts remains un-
changed, but since the number of shortcuts �so does the num-
ber of congestible nodes� increases, the average importance
of one congestible node decreases. So the value of a needs to
be decreased. Third, the above tendency should be viewed
integrally for the whole network. For our SWN model, the
overall impact of shortcuts on the topology of a given lattice
can be reflected by the length l0 of the network and the
dependence of l0 on L and p is as follows �26�:

l0�L,p� � �
L

2
, pL � 1, �7a�

ln�pL�
p

, pL � 1. �7b�

Since a is a quantity that adapts to the impact of shortcuts
and, when pL�1, the above tendency coincides with that
of l0 to L and p, we adopt the proportional form of a to l0 for
simplicity—i.e., a=cl0.

As to the coefficient c, we determine it by seeking the
point at which �max reaches the minimum. We simulate the
trend of �max changing with c for different L and p presented
in Fig. 3; to be explicit, we only show the envelope of the
curves. The average curve for the data sets is shown; �max is
normalized by 1/ �2L�, which is the EBC of an arbitrary node
of the underlying network in the absence of shortcuts. For all
the L and p presented, the optimal value of c for the extremal
low points of �max is 0.4±0.1. Moreover, c=0.4 is also very
close to the minimum point of the average curve. So for
simplicity we choose c=0.4 for the ERS. Note that a�1
when l0�2.5 which holds in most cases.

To gain insight into the effect of the weight assignment,
we demonstrate the change of nodes’ EBC before and after
applying step �i�. Figures 4�a� and 4�c� are the gray maps of

EBC for all nodes of the original networks; Figs. 4�b� and
4�d� stand for the networks after applying the effective dis-
tance. Each gray square represents a node; the bright color
represents the nodes with large EBC �mainly congestible
nodes�, while dark means the opposite. When the effective
distance is applied, �max is reduced by several times, so is
��, the standard variance of EBC. This also indicates the
distribution of EBC becomes more homogeneous.

The dynamical part of the routing cost is also crucial to
the performance of the network. The parameter � in Eq. �6�
determines how much dynamical information is incorporated
in the routing process. In general, a small portion of dynami-
cal information is enough. A similar strategy, the determinis-
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FIG. 3. Finding optimal c under different L and p. Upper and
lower curves: the envelope for the curves of the trend of �max

changing with c under different L and p. Middle curve: the average
of all the data sets.
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FIG. 4. �a�,�c� The gray map of each node’s EBC value before
applying step �i�; �b�,�d� the gray map of each node’s EBC value
after applying step �i�. The upper figures are for L=20, p=0.05 and
the lower ones are for L=50, p=0.05. For �a�, �b�, �c�, and �d�,
respectively, the values of �max are 0.09, 0.051, 0.052, and 0.016;
�avg are 0.018, 0.023, 0.0044, and 0.0064; the average EBC of
congestible nodes are 0.054, 0.007, 0.016, and 0.004; �� are 0.014,
0.007, 0.0046, and 0.002. The average distance l0 is 7.14 and 10.95

for �a� and �c�; the effective length l̄ is 9.2 and 16 for �b� and �d�.
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tic protocol, has been proposed by Echenique et al. in �17�.
The routing cost is def f

i =Ci=hddi+ �1−hd�ci, where di is the
shortest path length between node i and destination and ci
=qi. It is reported that the optimal value of hd is 0.75.
Correspondingly, �=0.25. Following their results, we fix
�=0.25 for the ERS throughout this paper.

The ERS helps the network to function more efficiently.
First, under light traffic, the queue length can be neglected
and the mean packet arrival rate of a node is nearly propor-
tional to its EBC. Since the maximum EBC is decreased, the
network capacity is increased. Second, under heavy traffic,
congestion can be further alleviated due to the queue length
information. When packets accumulate in the large-EBC
nodes, the succeeding packets have smaller probability to
flow into these nodes. In this way the mean packet arrival
rates of large-EBC nodes decrease and those of the low-EBC
nodes increase. In this case, the weight assignment is very
helpful for traffic to distribute uniformly, because the differ-
ence of the initial mean packet arrival rate between nodes is
reduced due to compression of the EBC distribution. So the
capacity of the network increases again. Finally, from Figs.

4�c� and 4�d�, the effective length l̄ has not increased much

compared with l0 of the original graph, and l̄ is also smaller
than L /2. That is because in the ERS, only part of the pack-
ets makes a detour to the manhattan route. Since under the

SRP the average travel time of packets is proportional to l̄
when � approaches zero �22�, the time delay performance of
packets is expected to be low under ERS.

IV. SIMULATIONS AND EXPLANATIONS

In this section we investigate the performance of the ERS.
The efficiency of the network is reflected by both the net-
work capacity and the average travel time of packets. The
network capacity is represented by the critical packet genera-
tion rate �c, which is the transition point from a free-flow
traffic state to a congested state. The phase transition is char-
acterized by the order parameter presented in �23�:

	��� = lim
t→


1

�N

��W�
�t

, �8�

where W�t� is defined as the number of total accumulated
packets in the network at time t. �W=W�t+�t�−W�t�, and
�¯� indicates an average over time windows of width �t.
This quantity represents the ratio between undelivered and
generated packets over long enough time periods. When
���c, 	 tends to zero; when ���c, the network enters a
congestion state, the number of accumulated packets grows
linearly in time, and 	 equals a finite value larger than 0 and
smaller than 1. We set the terminating time step as 50 000 for
all the following simulations and discard the data in the first
30 000 steps. The decision threshold of 	��� for congestion is
set to be 0.001.

For comparison with previous strategies, we use the Man-
hattan routing strategy �MRS� as the first reference. It is
defined as follows �27�: for a packet at node s whose desti-
nation is node t, it first selects any node i that has the mini-
mum manhattan distance dM�i , t� from the neighbor set N

and constructs a new set A; then, from A it chooses any
node that has the minimum queue length as set B. The next
hop node is selected randomly from B. Since the MRS con-
siders the queue length, it is also a kind of DRP.

The deterministic protocol �17� �DP� is used as the
second reference. The routing cost of a node i linearly com-
bines the shortest path length and queue length: Ci
=0.75d�i , t�+0.25qi, where t is the destination. If the dy-
namical part is abandoned, it is restored to the shortest path
�SP� routing. For convenience, we name the routing strategy
in which the routing cost linearly combines a distance metric
and the node queue length as the dynamic counterpart of the
one in which the routing cost is only the distance metric; and
conversely, the latter is the static counterpart of the former.

Another reference strategy is based on the “efficient path”
�EP�, recently proposed by Yan et al. �16�. In this
routing strategy, the routing cost for a path P�i→ j�ª i
�x0 ,x1 , . . . ,xn−1 ,xn� j between nodes i and j is
L(P�i→ j� :)=�i=0

n−1k�xi�, where k�xi� is the degree of node
xi. The efficient path between i and j is the path that mini-
mizes the above cost. It is reported that the optimal value of
 equals 1 for scale-free Barabasi-Albert �BA� networks.
This is a static strategy; in order to facilitate comparison, we
modify the routing cost to be dynamical in the same way of
this paper: Ci=0.75Lmin

=1�i , t�+0.25qi. Since the optimal  in
SWNs is unknown, we adopt =1 and name this strategy the
dynamical efficient path �DEP�. Because the only difference
between the routing cost of the ERS, DP, and DEP is the
static part, comparing with the other two can explicate the
advantage of the weight assignment scheme in ERS.

Since it is of great importance to know the limit of our
effort to improve the capacity, we also study the superior
bound of �c. Under any SRP, �c reaches a maximum when
�max achieves a minimum �22�:

�c =
1

N�max
. �9�

Taking into account that �max��avg and the absolute
lower bound of �avg is the average EBC of the network under
shortest path routing �because any changes from the shortest

paths will result in longer l̄ and �avg�
�i=1

N Bi

N2�N−1� = l̄
N �13��, we

get

�c �
1

�
i

�i

=
1

l̄
. �10�

Noting that l̄� l0, we get the superior bound of network
capacity ��c1

� for a given network under the SRP:

sup �c1
=

1

l0

. �11�

Now we generalize this to an arbitrary network and rout-
ing strategy. Inequality �10� can be rewritten as �c

�iBi

N−1

=�i
Bi

N−1 �N, where the left part corresponds to the sum of the
packet arrival rates of all nodes and the right part is the sum
of the outflowing rates �equal to 1� of all nodes. Regarding
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the network as a unit queuing system, from queuing theory
we know the input rate must be less than output rate for a
stable queue; so for any network that enters the stationary
state and is in a free-flow phase, this relation holds. Now that
Eq. �10� is universal for all network and routing strategies,
Eq. �11� is also universal. So we use Eq. �11� as a reference
for the ERS.

The above superior bound only corresponds to a given
network topology; in order to give a theoretical approxima-
tion of the superior bound of network capacity ��c2

� for the
ensemble of the network model in the small-world regime,
we combine Eq. �11� and Eq. �7b�, which yields the third
reference

sup �c2
=

p

ln�pL�
. �12�

Figure 5 summarizes the results of the simulated network
capacity of the ERS, MRS, DP, and DEP and the superior
bounds. We give the results of �c for different L and p and
the upper bounds of �c. We use the �c0

for shortest path
routing on the underlying lattice as a normalization factor. In
this case, the network is completely homogeneous; every

node’s EBC is the same and l̄= l0. Since l0=L /2, we have
�c0

=sup �c1
=2/L. From Fig. 5, it is clear that the network

capacity of the ERS is larger than that of the other strategies
for almost all L and p presented.

The performance of the ERS on network capacity can be
attributed to two factors: the weight assignment scheme and
the integration of queue length information. The former re-
duces the maximum EBC and homogenizes the distribution
of EBC, and the latter further balances the dynamic traffic
load on the network.

To understand the effects of the above factors on the per-
formance of the ERS, we must compare the traffic load be-
tween the ERS and its static counterpart �set �=0 and we
denote it as SERS�. In the static routing literature, between-
ness centrality is often termed as load �35�; however, when
the routing strategy is dynamical, BC has no definition. So
we introduce dynamic load �ld� to characterize the traffic
load of nodes under a dynamical routing protocol and call
BC the static load �ls� here to avoid confusion. Notice that
when the network is in a steady state ����c� and the arrival
and delivery processes are Poisson, the relationship between
the average queue length Qi of a node i and its mean packet
arrival rate �i is �22� Qi=

�i

1−�i
. Under any SRP, the mean

packet arrival rate is proportional to the node’s betweenness
centrality: �i=��iN. But under the DRP, the above relation-
ship does not hold and �i can be derived from Qi, which is a
measurable quantity: �i=

Qi

1+Qi
. Normalized by �N �the aver-

age number of packets generated in the whole network in
unit time step�, we get

ldi
��� =

�i

�N
=

Qi

�N�1 + Qi�
, � � �c, �13�

where ldi
represents the number of packets that flow into the

queue of node i on average for each packet generated in the
network. For a given network topology and routing strategy,
this quantity is solely determined by �. As �→0, queue
length can be neglected; �i→��iN, and this quantity is re-
stored to the static load: ldi

→ lsi
. Also, for the static counter-

part strategy ldi
=�i= lsi

. Thus we are able to compare the
“load” between static routing strategies and dynamical ones
under various �.

The comparison result of static load and dynamic load
between the SP, DEP, and ERS is presented in Fig. 6. As one
can see, for shortest path routing �SP� the static load distri-
bution shows the combined form of two Poisson-type de-
cays, resulting from short-range and long-range links �35�.
For the SERS, the contribution from long-range links disap-
pears and the horizontal range of static load distribution is
compressed, which are the outcomes of the weight assign-
ment. For the ERS, when the traffic generation rate is low
��=0.1�c� the dynamic load coincides with the static load of
the SERS, which means most of the packets still adopt the
shortest effective paths; under heavy traffic ��=0.95�c�, the
occurrence of an intermediate dynamic load is dramatically
increased with the high load part missing. This indicates that
the queue length information in the routing cost makes the
dynamic load become more homogeneous.

Though the queue length information is very important,
the following shows that the weight assignment is compara-
tively more pivotal to the high network capacity of the ERS,
which is closely related to the degree of homogeneity of the
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static load distribution of its static counterpart. In general, if
the latter is more homogeneous, then it is easier for the dy-
namic load to distribute more uniformly and to gain larger
capacity. For example, in Fig. 6, both the load distributions
of the ERS and that of the SERS under heavy traffic are
much less heterogeneous than those of the DEP and EP, and
the small-load part of the ERS and DEP resembles that of the
SERS and EP. This can be seen as the inertia of the packets:
the redirection of traffic to the small-load nodes only hap-
pens when it is necessary under extremely heavy traffic, or
else the small-load nodes do not bear much more load. So if
few nodes bear small static load under a SRP, they are more
likely to be fully utilized under heavy traffic for the corre-
sponding DRP. Obviously this is the case for the ERS.

Note that the capacity performances for the DEP and DP
are close. That is because for the “efficient path” strategy, the
weight of a node is proportional to its degree. In our SWN
model, the distribution of node degree follows an exponen-
tial decay which means that the degrees of congestible nodes
are small and are near to those of the other nodes. Therefore
the weights of the links that are attached to congestible nodes
are close to that of the other links, while in the SP all the link
weights equal 1. Since the performance of a DRP is largely
determined by the weight assignment of its static counter-
part, it is natural that DEP and DP performs similarly.

Figure 5 also shows the predominance of the ERS over
the MRS. The relatively high network capacity for the MRS
is mainly due to the homogeneity of the underlying regular
lattice. If shortcuts are absent, the static load of every node is
the same; now that the shortcuts are randomly distributed on
the lattice and thus the underlying graph does not become
more heterogeneous, the sites other than congestible nodes
are equally utilized in the MRS. However, the MRS merely
finds the node on the manhattan path that has the smallest
queue and there is no possibility for packets to take a round-
about path. In contrast, the ERS enables packets to go around
the jamming nodes.

It is worthy to note that the ERS performs relatively better
when the network size N and p grow; i.e., it has good scal-
ability. In Figs. 5�a� and 5�b�, when pN is small, the ERS

does not perform much better than the MRS, or even a little
worse when pN=5, but when pN�1, as p or L increases, the
difference between the network capacity of the ERS and that
of the MRS grows larger. In fact, the ERS works well when
the SWN model in this paper is indeed a small world, since
the basic form of the assigned link weight of shortcuts, l0
�Eq. �7b�� holds under the small-world condition pN�1.
The network is indeed a small world when pN�1; this is
confirmed by the coincidence of the theoretic upper bounds 1
and 2 in Figs. 5�a� and 5�b�.

Now we consider another performance indicator: the av-
erage travel time of packets, �T�. We compare the average
travel time of packets under the same packet generation rate
�=2/L between the ERS and MRS. The inferior bound to
�T� is also evaluated numerically, inf�T�= l0, since no path
can be shorter than the shortest path. Results are shown in
Fig. 7. In Figs. 7�a� and 7�b�, when L and p are small, the
difference between the time delays is also small, but when L
and p grow large, the ERS begins to show its efficiency. That
is because with the increase of L and p, �c increases which
makes �=2/L fall far below the critical value and the linear

relationship of �T� to l̄ begins to take effect, as stated in Sec.
III. Under the MRS, packets have little chance to use the
shortcuts and most of them follow manhattan routes on the
underlying lattice, so the average number of hops from
source to destination �equivalent to the effective length� is
close to L /2. But in the ERS, only about half of the packets

deviate from the shortest paths, so l̄ is much smaller than
L /2. The sharp increase of �T� when p→0 is because the
network enters a congested state under the ERS at �=2/L. In
addition, the difference between �T� of the ERS and the in-
ferior bound is decreased as L and p increases, which indi-
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cates that the ERS is time efficient in the small-world re-
gime.

V. CONCLUSION AND DISCUSSION

Small-world network models have great impact on the
research of the structure and dynamics of complex networks
�36�. Based on a two-dimensional SWN model, we have pro-
posed an efficient routing strategy that incorporates global
static effective distance and local queue length information.
The efficiency of the ERS lies in both enhancing the network
capacity and lowering the average travel time of packets. The
effective distance, which is the most important for the proper
function of the ERS, is constructed from a proper assignment
of the weight of the links attached to the congestible nodes.
The static load distribution of the network is homogenized
due to the weight assignment and thus provides strong basis
for the dynamic load to distribute uniformly. We have tested
the ERS with different network sizes up to N=10 000 and
various p; it is shown that the ERS is more efficient than the
reference strategies when the network is indeed a small-
world one.

The weight assignment scheme in the ERS is simple; it
takes into account the characteristics of network topology
and only considers a few congestible nodes that are the most
“influential” on the network performance. Though the ERS is
applicable only to the SWN in this paper, we believe that the
idea here might inspire new routing strategies on other com-
plex network models, like scale-free networks. For example,
corresponding to the congestible nodes here, one may iden-
tify a few “hub nodes” that have largest degrees and assign
weights according to the topological properties of them. A
noteworthy strategy on this route is called hub avoidance
�HA� �32� for scale-free networks. It first removes a few hub
nodes of the network and uses the shortest path routing for
the nodes in each remaining connected cluster, then puts

these hub nodes back along with their edges and assigns
routes using SP for the pairs of vertices that are disconnected
when those hub nodes are absent. In terms of weight assign-
ment, this is equivalent to assigning infinite weight to those
hub nodes: while they appear to be nonexistent for the vertex
pairs in the first round of SP routing, the hub nodes are on
the unique paths for the remaining unrouted pairs of vertices.
HA is proved to perform well in the scale-free network
model �21,32�. One may wonder whether the network per-
formance may improve further when the hub nodes in scale-
free networks are given finite weights.

In addition, the ERS can be easily implemented because
the main computing cost is the calculation of network length
and minimum effective distances before applying the routing
table. There are many efficient algorithms for the shortest
path problem �37�, and it can be done in a distributive man-
ner �38�. Moreover, the additional form of routing cost is
simple enough to be computed.

To provide an outlook, the maximum capacity of the ERS
is still far from the theoretical limit, which indicates that
there is still some work left to do. In our paper, all congest-
ible nodes are treated equally; to find more efficient ways of
enhancing the network efficiency, future work may involve
the dependence of link weight on the importance of the
shortcuts or congestible nodes.
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